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ABSTRACT

Transfer learning with deep neural networks has revolutionized the elds of computer vision
and natural language processing in the last decade. This is especially signi cant for elds such
as biology where we usually have small labeled data but an abundance of unlabeled data. Using
abundant unlabeled data to enhance performance on a small labeled dataset is the hallmark of
transfer learning. In this dissertation, | tap into the potential of transfer learning to solve critical
problems in the antibiotic resistance domain. Antibiotic resistance occurs when bacteria gain
functionality to thwart mechanisms through which antibiotics work to kill or inhibit bacteria. This
resistance is leading to alarming rates of mortality and morbidity among the world population.
Two critical aspects in combating antibiotic resistance is searching for novel sources of antibiotics,
and identifying genes that confer antibiotic resistance ability to a bacteria. As | show, in both
of these cases, we have small labeled datasets but large unlabeled data at our disposal. | have
incorporated transfer learning technigues in both cases, signi cantly improving on current state-of-
the-art performance typically achieved by alignment based approaches such as BLAST or HMMER.
| also introduce a novel optimization method to train neural networks that o er reliable uncertainty
estimates when the model is tested on Out-of-distribution (OoD) data. Finally, | oer future

directions on how transfer learning can be further utilized to solve these critical problems.



CHAPTER 1. INTRODUCTION

Antibiotics are drugs used to treat bacterial infections. Since their introduction during the
1940s, they have saved millions of human lives (Sengupta et al., 2013). Antibiotics have played a
critical role in increasing life expectancy which has increased from 56.4 years to almost 80 years
(Shrestha et al., 2005) in the United States. These drugs also help people with chronic diseases
such as diabetes, renal diseases as well as people undergoing major surgery survive life threatening
infections (Ventola, 2015). Yet antibiotic resistance { the phenomenon when previously treatable
microbes gain the ability to resist antibiotics and survive { is threatening to ruin all medical
progress in today's world. Overuse of antibiotics, over-zealous prescription of antibiotics, extensive
use in agriculture, release of antibiotics into environment without proper wastewater treatment
during production, patients not nishing their course etc are making the situation worse (Read and
Woods, 2014; for Disease Control and Prevention, 2018). In this chapter, | provide a brief history
of antibiotics and antibiotic resistance, an outline of problems I try to solve using machine learning,

and an introduction to such machine learning methods, and how this dissertation is structured.

1.1 Antibiotics and Antibiotic resistance

The term antibiotics, in its strict usage, refers to agents produced by microorganisms that Kill
or inhibit other microorganisms. The term antimicrobials refers to a broader set of agents that can
include antibiotics as well as synthetic, semi-synthetic or natural agents originating from plants
and animals. Unlike antibiotics, antimicrobials may also inhibit or kill viruses, fungi or protozoa
along with bacteria. The term antibacterials is also often used interchangeably with the term
antimicrobials.

Antibiotics Kill or inhibit growth of microbes by di erent mechanisms of targeting bacterial

physiology and biochemistry (Sengupta et al., 2013), and can be classi ed by their target site.



For example, -lactams, Glycopeptides, Fosfomycins attack cell wall formulation. Sulfonamides
and Trimethoprim disrupt nucleic acid synthesis. Macrolides, Streptpgramins, Amphenicol, Lin-
cosamide etc attack protein synthetic machinery by targeting ribosomal subunits (Boolchandani
et al., 2019). A few antibiotics like Lipopeptide and Polymyxin target cell membranes. Antibiotic
resistance happens when bacteria circumvent the mechanisms described above. More speci cally,
resistance instantiate through reduced permeability, antibiotic e ux, antibiotic target site protec-
tion, and many other ways (Boolchandani et al., 2019).

Antibiotics and antibiotic resistance have developed mutually because of the production of an-
tibiotics in the biosphere by microorganisms, albeit the concentration is much lower than what is
used for therapeutic purposes (Sengupta et al., 2013). Use of these secondary metabolites as antibi-
otics by bacteria has naturally made some of them inherently resistant towards certain antibiotics
(Nicolaou and Rigol, 2018). Hence, there are resistance genes in these bacteria that confer the
functionality of antibiotic resistance upon them. However when discussing the problem of antibi-
otic resistance that is currently plaguing the world, we largely refer to the ability of a bacteria to
gain resistance against an antibiotic when it was previously susceptible to it. This can happen by
gaining resistance genes from another closely related strain or another species of bacteria. Figure
1.1 shows a brief history of antibiotics introduction for therapeutic use and subsequent development
of antibiotic resistance.

Figure 1.1 shows that whenever an antibiotic has been introduced, eventually resistance to it
has resulted in some bacteria. At the same time, after the 19880s, the antibiotic pipeline has largely
dried up. Hence, while development of resistance to antibiotics in some bacteria is natural, overuse
in human prescription as well as in agricultural use have led to many resistant bacteria that are
not susceptible to any of the antibiotics currently available.

Figure 1.2 shows a chart of number of antibiotics approved over the years. The number has
gradually decreased over the last three decades. There are three main obstacles towards developing
new antibiotics | regulatory barriers, fewer economic incentives, and scienti ¢ obstacles (Wright,

2014). Compared with other drug trials, antibiotics drug trials are signi cantly harder and expen-



Figure 1.1: Brief history of antibiotic introduction and subsequent development of antibiotic resis-
tance. Image from (Ventola, 2015).



	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Antibiotics and Antibiotic resistance
	1.2 Search for natural products
	1.3 Prediction of antibiotic resistance genes
	1.4 Machine learning in computational biology
	1.5 Transfer learning
	1.6 Reliable uncertainty estimation
	1.7 Dissertation structure
	1.8 References

	2. IDENTIFYING ANTIMICROBIAL PEPTIDES USING WORD EMBEDDING WITH DEEP RECURRENT NEURAL NETWORKS
	2.1 Abstract
	2.2 Introduction
	2.3 Methods
	2.3.1 The Representation of Proteins with Word Embedding Vectors
	2.3.2 Word2vec with a Recurrent Neural Network
	2.3.3 Comparing with baseline methods
	2.3.4 Building the training dataset
	2.3.5 Identifying genomic regions for novel putative bacteriocins
	2.3.6 Datasets

	2.4 Results
	2.4.1 Results on 50kb Chromosomal Stretches

	2.5 Discussion
	2.6 Appendix: supplementary material
	2.7 References

	3. TRANSFER LEARNING IMPROVES ANTIBIOTIC RESISTANCE CLASS PREDICTION
	3.1 Abstract
	3.2 Introduction
	3.3 Dataset
	3.4 TRAC
	3.5 Methods for comparison
	3.6 Results
	3.7 Discussion
	3.8 Appendix: supplementary material
	3.9 References

	4. ENHANCED RELIABILITY FOR OUT OF DISTRIBUTION DATA DETECTION IN CLASSIFYING ANTIBIOTIC RESISTANCE GENES
	4.1 Abstract
	4.2 Introduction
	4.3 Detection of Out-of-distribution data with Preconditioned Stochastic Gradient Langevin Dynamics (pSGLD)
	4.4 Experimental setup
	4.5 Results
	4.6 Discussion
	4.7 References

	5. DISCUSSION AND FUTURE DIRECTIONS
	5.1 Discussion
	5.2 Future directions
	5.3 References


